Gauss-seidel method example

Método de Gauss y Gauss Jordan

0 ratings0% found this document useful (0 votes)
11 views

Copyright:

Available Formats

Download as PDF or read online from Scribd
0 ratings0% found this document useful (0 votes)
11 views3 pages

Original Title

método de Gauss y Gauss Jordan

Copyright

Available Formats

PDF or read online from Scribd

Share this document

Share or Embed Document

Did you find this document useful?

Is this content inappropriate?

Copyright:

Available Formats

Download as PDF or read online from Scribd
0 ratings0% found this document useful (0 votes)
11 views3 pages

Copyright:

Available Formats

Download as PDF or read online from Scribd

You might also like

    Footer menu

    INFOGRAFÍA GAUSS

    GAUSS

    INTRODUCCIÓN

    VIDA PERSONAL

    VIDA ACADÉMICA

    LOGROS

    LIBROS PUBLICADOS

    i

    INVENTOS

    Por: Alejandra De Luiz y Carmen Baca

    fuentes

    Carl Friedrich Gauss (1777 - 1855) - Biography - MacTutor History of Mathematics (st-andrews.ac.uk) https://www.ugr.es/~eaznar/gauss.htm https://www.britannica.com/biographies https://www.mcnbiografias.com/app-bio/do/show?key=gauss-karl-friedrich https://es.wikipedia.org/wiki/Carl_Friedrich_Gauss

    VIDA PERSONAL

    • Fue hijo de un humilde albañil.
    • Se casó con su primera mujer, con la que tuvo 3 hijos.
    • El primero de ellos, heredó la capacidad de su padre para cálculos.
    • Tras cuatro años, ella murió, pero contrajo de nuevo matrimonio y tuvo 3 hijos más.
    • Sufrió un fuerte shock en un accidente.
    • Finalmente, en 1855, murió
    a los 77 años.

    Lorem ipsum dolor sit amet, consectetur adipiscing elit

    Carl Friedich Gauss fue un célebre matemático y astrónomo alemán.

    INTRODUCCIÓN

    • Vivió entre 1777 y 1855
    • Es el príncipe de las matemáticas
    • Uno de los tres genios de la historia de las matemáticas.

    TELÉGRAFO ELÉCTRICO (1833)

    I

    Gauss–Seidel method

    Iterative method used to solve a linear system of equations

    In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the GermanmathematiciansCarl Friedrich Gauss and Philipp Ludwig von Seidel. Though it can be applied to any matrix with non-zero elements on the diagonals, convergence is only guaranteed if the matrix is either strictly diagonally dominant,[1] or symmetric and positive definite. It was only mentioned in a private letter from Gauss to his student Gerling in 1823.[2] A publication was not delivered before 1874 by Seidel.[3]

    Description

    Let be a square system of n linear equations, where:

    When and are known, and is unknown, the Gauss–Seidel method can be used to iteratively approximate . The vector denotes the initial guess for , often for . Denote by the -th approximation or iteration of , and by the approximation of at the next (or -th) it

    Copyright ©oilpike.pages.dev 2025